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Abstract. We present a new model-checking technique for CSP-OZ-DC, a com-
bination of CSP, Object-Z and Duration Calculus, that allows reasoning about
systems exhibiting communication, data and real-time aspects. As intermediate
layer we will use a new kind of timed automata that preserve events and data
variables of the specification. These automata have a simple operational seman-
tics that is amenable to verification by a constraint-based abstraction-refinement
model checker. By means of a case study, a simple elevator parameterised by the
number of floors, we show that this approach admits model-checking parame-
terised and infinite state real-time systems.

1 Introduction

Complex computing systems exhibit various behavioural aspects such as communica-
tion between components, state transformation within components, and real-time con-
straints on the communications and state changes. This observation has led research
to combine and semantically integrate specification techniques. In [14] and [15] we
introduced CSP-OZ-DC, the combination of three well-investigated specification tech-
niques: CSP [12], Object-Z [22,23] and Duration Calculus [27,26]. Due to its expres-
siveness, however, CSP-OZ-DC is not suited for automated verification.

In this paper, we present an approach to automatically verify CSP-OZ-DC specifi-
cations by model-checking. To this end, the specifications are translated to transition
constraint systems (transition systems whose transitions are labelled by constraints ex-
pressed in first-order logic), which are model-checked using constraint-based symbolic
techniques [6] plus predicate abstraction [10] with counterexample-driven abstraction
refinement [3,11,5].

The translation from CSP-OZ-DC to transition constraint systems is via a novel
class of timed automata, called phase event automata, providing an essential prereq-
uisite for model-checking: an operational semantics for CSP-OZ-DC specifications.
These automata describe the behaviour of instantaneous events that stem from the CSP
world, states with durations that model the Object-Z state variables, and clocks used for
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real-time constraints defined by Duration Calculus. The translation to phase event au-
tomata is compositional, i. e., the translation of a CSP-OZ-DC specification is a parallel
product of several automata, each corresponding to one part of the specification. Thus,
our phase event automata provide the first compositional operational semantics for (a
subclass of) CSP-OZ-DC.

The translation from phase event automata to transition constraint systems follows
an “old-fashioned recipe for real-time” [1,16] by splitting continuous runs into discrete
sequences of intervals. Moreover, the translation is compositional with respect to paral-
lel products. All in all, the process of translating CSP-OZ-DC specifications via phase
event automata into transition constraint systems and model-checking these systems
can be automated completely. In all steps the structure of the original specification is
preserved, so that counterexamples found by the model-checker can easily be translated
back to the CSP-OZ-DC world.

For being able to model-check, we have to pay a price. We have to restrict the CSP-
OZ-DC specifications such that the CSP part is finite state, the constraints in the OZ
part fall into a decidable class, and the DC part consists of so-called counterexample
formulae only. Nevertheless, this subclass of CSP-OZ-DC still admits non-trivial spec-
ifications, as we show in a small case study.

The paper is organised as follows. Section 2 introduces the main constructs of CSP-
OZ-DC via a case study. Section 3 describes phase event automata. Section 4 sketches
the translation from CSP-OZ-DC to phase event automata. In section 5 we will intro-
duce transition constraint systems and give the translation from automata to transition
constraints. Section 6 presents the results of applying our approach to the case study
and verifying an invariant. Finally, we conclude with section 7.

2 Case Study

In this section we introduce the combined formalism CSP-
start

stop

newgoal
passed

Fig. 1. Elevator

OZ-DC [14] and the case study of a controller for an eleva-
tor, see Fig. 1. The case study is kept very simple and only
contains the core of the controller. It is separated into three
aspects, each of which is specified in one of the three lan-
guages. The control and communication aspects are spec-
ified with CSP and encompass the interaction with the en-
vironment abstracting from concrete values transmitted.
Data aspects specified with Object-Z involve the calcula-
tion of current and goal floor. The real-time behaviour is
specified with Duration Calculus.
Communication aspects are described with CSP [12], a language for communicating
sequential processes. It is used to define the admissible sequences of events:

main
c
= newgoal→ start→ Drive

Drive c
= (passed → Drive) 2 (stop→ main)

The elevator has a cyclic behaviour switching between the processes main and Drive.
The keyword main names the process that will be entered initially. The elevator first
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chooses a new goal floor, then it starts the engine and switches to the Drive process. It
can then either pass a floor and keep on driving, or stop and return to the main process.
The symbol 2 denotes an external choice, which means that the environment deter-
mines which of these event will be taken. In this case it is determined by the interaction
with the Object-Z and Duration Calculus part of the specification.

Data aspects: The representation of data state and the algorithmic part of the eleva-
tor is described with Object-Z. The floors are modelled by integers ranging from the
constants Min to Max. No concrete values for the boundaries are given but the only
requirement is Min < Max. These bounds can be seen as parameters of the elevator. In
Z these constants are declared in a so called axiomatic definition. The internal state of
the elevator is given by the following state schema. It contains two variables for current
and goal floor and a variable dir, which describes the direction the elevator is heading
to (1 for upwards, −1 for downwards). The initial values for the variables are given by
a schema with the special name Init.

Min,Max : Z

Min < Max

current, goal : Z
dir : {−1, 0, 1}

Init
goal = current = Min
dir = 0

In CSP-OZ-DC the link between events and states is established by communication
schemas. By naming convenience, the following schema describes the change that the
passed event induces:

com passed
∆(current)

current′ = current + dir

The ∆ list on the first line mentions the variables that are changed by the operation.
In this case only current is changed by adding the value of dir, which increases or
decreases the floor counter depending on the value of dir.

For simplicity the set of requested floors and the algorithm to choose the next goal
floor is abstracted from. Instead the goal floor is chosen non-deterministically from the
range of all floors except the current one. When the elevator starts, it will choose the
direction in accordance with the position of the new goal floor. Finally the elevator is not
allowed to stop before reaching the goal floor. This can be stated by a communication
schema with an empty delta list. These schemas are given Fig. 2.

Real-Time aspects are described with Duration Calculus (DC). This is a logic that al-
lows specifying real-time behaviours. Unfortunately the full logic of Duration Calculus
is too powerful to be checked automatically. Therefore only a restricted class of for-
mulae, called counterexample formulae, may be used in CSP-OZ-DC specifications3.
A counterexample formula describes a specific undesired behaviour in form of a linear

3 In [14] we used implementables for Duration Calculus but that are just abbreviations for certain
counterexample formulae.
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trace. This formula is negated as it is a forbidden behaviour. Restricting ourself to these
types of formulae makes over-specification less likely: It is easy to see that a certain
behaviour should not occur and this is all the formula states.

The general shape of a counterexample formula is as follows:

¬ 3(phase1 ; . . . ; phasen)

Here the formula 3F states that there is a subinterval (DC formulae describe the shape
of trajectories in a given time interval) where F holds. This interval is then chopped up
into n subintervals (this is denoted by ;) each satisfying phasei, which must be a simple
formula restricting the current state of the system, the events that may or may not occur
during this interval, and either the minimum or the maximum length of this interval.
The whole formula is negated as it is a counterexample.

To restrict the state of a variable the standard Duration Calculus notation is used:
For example, ddir = 1e holds for intervals satisfying dir = 1. For each event a new
Boolean variable is introduced that changes every time the event occurs. The formula
l ev holds for a point interval, at which the Boolean variable ev changes4. The formula
� ev states that an event does not occur during a non-empty interval5.

In the case study real-time properties are used to ensure that the elevator stops when
it reaches the goal floor before passing the next floor. To achieve this, a minimum time
of three seconds between two adjacent passed events is demanded. This is expressed
by a negated counterexample where two passed events occur after each other, with an
interval in between that has a duration (denoted by `) of at most three seconds.

¬ 3(l passed ; ` ≤ 3 ; l passed)

Furthermore it is claimed that the elevator stops within two seconds. The following
formula states the impossibility of the stop event not occurring even after the goal has
been reached for more than two seconds.

¬ 3(dcurrent 6= goale ; (dcurrent = goale ∧ ` ≥ 2 ∧ � stop))

The complete specification of the elevator is shown in Fig. 2. The specification is
framed and given a name. It starts with the interface specification that lists the names
of the communication events. The interface is followed by the CSP and Object-Z part.
Then follows the DC part, which is separated by a short horizontal line.

The property to verify for this specification is Min ≤ current ≤ Max. Note that it is
not obvious that this property holds at all, as there is no such check in com passed. It
only holds because of the interaction between the CSP process, the data transformation
and the real-time properties of the specification. As a matter of fact, every single line
of the above specification contributes to this property. In the remainder of this paper
this combined specification is translated into a certain kind of timed automata and the
invariant property above is proven.

4 It is defined as l ev = ↑ ev ∨ ↓ ev with the operators ↑, ↓ as defined in [26]
5 It is defined as � ev := deve ∨ d¬ eve
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Elevator
chanstart, passed, stop, newgoal
main

c
= newgoal→ start→ Drive

Drive c
= (passed → Drive) 2 (stop→ main)

Min,Max : Z

Min < Max

current, goal : Z
dir : {−1, 0, 1}

Init

goal = current = Min
dir = 0

com newgoal
∆(goal)

Min ≤ goal′ ≤ Max
goal′ 6= current

com start
∆(dir)

goal > current ⇒ dir′ = 1

goal < current ⇒ dir′ = −1

com passed
∆(current)

current′ = current + dir

com stop
∆()

goal = current

¬ 3(l passed ; ` ≤ 3 ; l passed)
¬ 3(dcurrent 6= goale ; (dcurrent = goale ∧ ` ≥ 2 ∧ � stop))

Fig. 2. Elevator specification

3 Phase Event Automata

In this section a new type of timed automata is introduced, so called phase event au-
tomata, that can characterise the behaviour of state- and event-based systems. These
automata serve as a bridge between CSP-OZ-DC described in section 2 and transition
constraint systems that will be described in the next section. They possess the notion of
events, variables and clocks.

Fig. 3 shows an example of a phase event automaton. This automaton corresponds to
the second Duration Calculus formula of the case study specifying that the automaton
should stop when the destination floor has been reached. Initially it can be either in
phase p0 (if current 6= goal holds) or in phase p1 (otherwise). There are no restrictions

p0

current 6= goal

p1

current = goal

p2

current = goal
c1 < 2

true stop

c1 := 0

true

¬ stop

true

true

Fig. 3. A phase event automaton



6 Jochen Hoenicke and Patrick Maier

of what may happen next. As soon as a change from current 6= goal to current = goal
occurs, the automaton switches to phase p2, resets the clock c1 to zero and makes sure
that the elevator will stop within two seconds. Due to the invariant c1 < 2, phase
p2 must be left in time. One possibility is to back to p1, which can only be done if
current 6= goal holds. The other possibility is by a stop event.

3.1 Notation

The states of the systems are described by first-order formulae. We work in many-
sorted first-order logic with equality denoted by ≈. The set of variables is denoted by
V̂ . With each variable x ∈ V̂ a sort type(x) is associated, which restricts the possible
values for x. The logic uses typed functions and predicate symbols. From this terms
and formulae are defined inductively. By L, we denote the class of first-order formulae
that are allowed in the specification. L(V) denotes the set of those formulae in L that
only refer to variables in V ⊆ V̂ . To be able to formulate the translations in Section 5,
we demand that L contains at least the class of quantifier-free formulae involving only
Booleans variables and linear arithmetic expressions over the reals. For the case study,
L should moreover contain linear arithmetic expressions over the integers.

The set of variables V̂ is partitioned into two disjoint sets V and V ′ such that V ′ is
a copy of V . We call the variables in V ′ primed, those in V unprimed. The unprimed
variables refer to the state before a transition while the primed variables refer to the post
state.

Semantically, variables are interpreted by valuations and all syntactic symbols ex-
cept variables by a fixed algebra. Given a subset V ⊆ V̂ , a V-valuation α is a mapping
that assigns a value in Utype(x) to each variable x ∈ V , the domain of that type. Some-
times, we denote a V-valuation α by the expression {x 7→ α(x) | x ∈ V}. The set of all
V-valuations is denoted by Val(V). Given two subsets V1,V2 ⊆ V̂ and a V1-valuation
α, we denote the restriction of α to a (V1 ∩ V2)-valuation by α|V2

. Given two sub-
sets V1,V2 ⊆ V̂ , a V1-valuation α1 and a V2-valuation α2 with α1|V2

= α2|V1
, we

write α1 ∪ α2 to denote the (V1 ∪ V2)-valuation α with α|V1
= α1 and α|V2

= α2.
Given a subset V ⊆ V and a V-valuation α, we write α′ to denote the V ′-valuation with
α′(x′) = α(x) for all x ∈ V . Given a V-valuation α and a formula ϕ with free(ϕ) ⊆ V ,
we write α |= ϕ to denote that α satisfies ϕ. We write |= ϕ to denote that ϕ is valid.

To introduce the timed automata notion of clocks, we distinguish a sort Time, inter-
preted by the (non-negative) real numbers. Let Clocks ⊆ V be a set of time variables,
i. e., type(c) = Time for all c ∈ Clocks, which we call clocks. Let C ⊆ Clocks be a
set of clocks. Given two C-valuations α and β, a non-negative real number t ≥ 0 and a
subset of clocks X ⊆ C, we define α+β, α+ t, tα as the C-valuations that are obtained
by addition resp. multiplication of the clock values and α[X := 0] as the C-valuation
that assigns all clocks in X the value zero and leaves all other unchanged. We call a
formula ϕ ∈ L(C) convex if (1− t)α+ tβ |= ϕ for all real numbers 0 ≤ t ≤ 1 and all
C-valuations α and β with α |= ϕ and β |= ϕ.

The events are modelled by a set Events ⊆ V of boolean variables, i. e., type(e) =
Bool for all e ∈ Events. However, here events are not modelled by changes of this
variable, but the variable is true if the event occurs, false otherwise. Let E ⊆ Events
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be a set of events. By χE, we denote the characteristic function of E, i. e., the mapping
from Events to UBool = B such that for all e ∈ Events, χE(e) = true iff e ∈ E. Note
that χE is an Events-valuation.

3.2 Formal Definition

A phase event automaton (PEA) is defined as a tupleA = (P,V,A,C,E, s, I,P0) of the
following components:

– P is a set of states (phases).
– V ⊆ V \ (Events ∪ Clocks) is a finite set of (state) variables.
– A ⊆ Events is a finite set of events.
– C ⊆ Clocks is a finite set of clocks.
– E ⊆ P×L(V ∪V ′∪A∪C)×P(C)×P is a set of edges. An edge (p1, g,X, p2) ∈ E

represents a transition from phase p1 to phase p2 under guard g. All clocks in X are
reset when this transition is taken.

– s : P → L(V) is a labelling function that associates each phase with a predicate
that must hold during this phase.

– I : P → L(C) is a function assigning to each phase a clock invariant that has to
hold while the automaton is in this phase.

– P0 ⊆ P is a set of possible initial phases.

We impose the extra requirements that

– for all p ∈ P, the clock invariant I(p) is convex, and
– for all p ∈ P, E contains a stuttering edge (p,¬e1 ∧ . . . ∧ ¬ek ∧ v1 = v′1 ∧ . . . ∧

vj = v′j ,∅, p) for some particular {e1, . . . , ek} ⊆ A, {v1, . . . , vj} ⊆ V .

To make the intuitive meaning of phase event automata precise we define the traces
of an automaton as sequences of variable and clock evaluations, time delays and com-
municated events. Let A = (P,V,A,C,E, s, I,P0) be a PEA. A state of A is a triple
(p, β, γ) of a phase p ∈ P, a V-valuation β and a C-valuation γ. A duration is a positive
real number. A run of A is an infinite sequence

〈(p0, β0, γ0), t0,Y0, (p1, β1, γ1), t1,Y1, . . .〉

alternating states (pi, βi, γi), durations ti and sets of events Yi ⊆ A such that the follow-
ing holds:

1. p0 ∈ P0.
2. For all c ∈ C, γ0(c) = 0.
3. For all i ≥ 0, βi |= s(pi).
4. For all i ≥ 0 and all 0 ≤ δ ≤ ti, γi + δ |= I(pi).
5. For all i ≥ 0 there is an edge (pi, g,X, pi+1) ∈ E such that

(a) βi ∪ β′i+1 ∪ (γi + ti) ∪ χYi |= g and
(b) γi+1 = (γi + ti)[X := 0].
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We denote the set of runs by Run(A). We call a state (p, β, γ) reachable if there is a run
〈(p0, β0, γ0), t0,Y0, (p1, β1, γ1), t1,Y1, . . .〉 of A such that (p, β, γ) = (pi, βi, γi + δ)
for some i ≥ 0 and 0 ≤ δ ≤ ti. By Reach(A), we denote the set of reachable states of
A.

The stuttering edge (pi,¬e1 ∧ . . . ∧ ¬ek ∧ v1 = v′1 ∧ . . . ∧ vj = v′j ,∅, pi) is
required to make the definition invariant against stuttering. This simplifies the definition
of parallel composition, because automata can step synchronously.

Lemma 1. Let A be a PEA and r = 〈(p0, β0, γ0), t0,Y0, (p1, β1, γ1), t1,Y1, . . .〉 a
run of A. Then for all i ≥ 0, stuttering the i-th state in r yields another run of A;
more precisely for all 0 < δ < ti, replacing the subsequence 〈(pi, βi, γi), ti,Yi〉 in r by
〈(pi, βi, γi), δ,∅, (pi, βi, γi + δ), ti − δ, Yi〉 yields a run of A.

Given a run 〈(p0, β0, γ0), t0,Y0, (p1, β1, γ1), t1,Y1, . . .〉 of A, we call the infinite
sequence (β0, t0,Y0, β1, t1,Y1, . . .) a trace of A, i. e., a trace is a sequence alternating
V-valuations, durations and sets of events. By Trace(A), we denote the trace language
(i. e., set of traces) of A.

3.3 Parallel Composition

To build a larger system from multiple automata a parallel composition operator has to
be defined. Here, it also plays an important role in defining semantics for CSP-OZ-DC.
Each part is translated separately into an automaton and they are put in parallel. In [14]
the CSP and Object-Z part are joined by the CSP synchronised parallel operator and the
Duration Calculus part is joined with logical conjunction. To define equivalent seman-
tics with phase event automata the parallel composition is required to have the same
property. To achieve this, the automata are synchronised on both events and states: An
event that is in the alphabet of both automata may only be taken if both automata agree,
which is the same as CSP synchronisation. Likewise a variable of both automata may
only be changed if both automata allow it, which corresponds to logical conjunction.
The clocks need to be disjoint, so they do not interfere with each other. The parallel
composition A1 ‖ A2 of two automata A1 and A2, Ai = (Pi,Vi,Ai,Ci,Ei, si, Ii,P0i),
is the PEA A = (P,V,A,C,E, s, I,P0) defined as follows:

– P := P1 × P2. This is a standard product automata construction.
– V := V1 ∪ V2.
– A := A1 ∪ A2. The new alphabet is the union of the two alphabets.
– C := C1 ∪ C2 and C1 ∩ C2 = ∅. The clock set is the disjoint union of C1 and C2,

that is clocks that appear in both sets need to be renamed.
– s((p1, p2)) = s(p1) ∧ s(p2). The states are labelled with the conjunction of the

corresponding state predicates in A1 and A2.
– I((p1, p2)) = I(p1) ∧ I(p2). Likewise the clock invariant is the conjunction of the

clock invariants in A1 and A2.
– P0 := P01 × P02.
– The set of edges E contains ((p1, p2), g1 ∧ g2,X1 ∪ X2, (p′1, p

′
2)) for each two edges

(pi, gi,Xi, p′i) ∈ Ei, i = 1, 2 in the corresponding automataAi. Note that the stutter-
ing edges of one automaton allow the other automaton to do a step independently
from the first automaton. This is the reason why stuttering edges are required.
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This is a product automaton construction. Both automata must agree on the state space
and events must occur synchronously, therefore the state predicates and transition guards
are the conjunction of the predicates for the two automata. It is obvious from this defi-
nition that parallel composition is commutative (modulo renaming of phases) and that
it preserves the extra requirements of convexity and stuttering edges. The traces of the
parallel automaton are exactly those that are allowed by both automata:

Lemma 2. LetA1 andA2 be PEA. Then 〈β0, t0,Y0, . . .〉 ∈ Trace(A1 ‖A2) if and only
if 〈β0|V1

, t0,Y0 ∩ A1, . . .〉 ∈ A1 and 〈β0|V2
, t0,Y0 ∩ A2, . . .〉 ∈ A2.

This can be easily seen by comparing the runs of the three automata. This lemma sug-
gests the following verification method for properties that are satisfied if they hold for
every trace. To prove such a property for a system of automata A1 ‖ . . . ‖ An, one can
choose some automata that seem to be related to the property. The hope is that for this
small subsystem it is much easier to prove than for the full system. If the smaller sub-
system satisfies the property, the complete system does also, because it has only fewer
traces. Otherwise the model-checker gives a counterexample that can be examined. If
it is prevented by one of the remaining automata the automaton is added to the parallel
product and the model checking is repeated.

4 PEA Semantics for CSP-OZ-DC

In this section we will give semantics for CSP-OZ-DC based on phase event automata.
They are equivalent to the semantics given in [14]. The semantics is compositional: The
CSP, Object-Z and Duration Calculus part are translated separately into phase event
automata and then run in parallel. The semantics of the complete elevator specification
is

A(Elevator) = A(CSPElevator)‖A(OZElevator)‖A(DCElevator)

Translation of CSP: The translation of the CSP part to a phase event automaton is
straightforward. The operational semantics of CSP [18] is used to construct an equiva-
lent phase event automaton. The phases are labelled by CSP processes, the alphabet A is
the alphabet of main. There are no state variables V and no clocks C. For each transi-
tion p a→ p′ of the operational semantics there is an edge (p, a ∧

∧
e∈A\{a} ¬e,∅, p′) ∈

E, which allows only event a and forbids all other events in the alphabet. For a τ tran-
sition p τ→ p′ the corresponding edge is (p,

∧
e∈A ¬e,∅, p′) communicating no events.

And finally there is the stuttering edge (p,
∧

e∈A ¬e,∅, p) for every p ∈ P. The initial
phase is the phase corresponding to the main-process. Fig. 4 shows the phase event
automaton for the CSP process given in section 2.

Translation of Object-Z: The Object-Z part is translated into a two-phase automaton.
The initial phase restricts the state with the predicates in Init. This phase is connected
with the main phase by a single edge allowing no events or variable changes. The main
phase has one edge for each event that allows exactly this event, keeps all variables not
in the ∆-list constant, and restricts the variables in accordance with the communication
schema. Every phase further has the stuttering edge, disallowing all events and variable
changes.
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p0 (main)
true

p1

true
p2 (Drive)

truenewgoal
∧ ¬start
∧ ¬stop
∧ ¬passed

start
∧ ¬newgoal
∧ ¬stop
∧ ¬passed

stop ∧ ¬newgoal ∧ ¬start ∧ ¬passed

¬ . . . ¬ . . . ¬ . . .

passed
∧ ¬newgoal
∧ ¬start
∧ ¬stop

Fig. 4. Translation of CSP part

Translation of Duration Calculus Despite their expressiveness it is possible to translate
each DC counterexample formula to a phase event automaton. The basic algorithm is
the same that is used for negating a finite automaton, namely the power set construction.
As defined in section 2, a counterexample formula consists of several phases phase1 ;
. . . ; phasen. The idea is to remember for each of these phases, whether the time interval
from the start of the system to the current time satisfies the formula

true ; phase1 ; . . . ; phasei, 1 ≤ i ≤ n

A phase of the PEA is labelled by a set of those phases of the counterexample, for
which the above formula holds. For a phase with a lower bound on its duration there is
an additional flag that signals if the above formula would only hold without the lower
bound. Each phase phasei with a time bound needs a clock ci that measures the duration
of the phase. Because only either an upper or a lower bound on the duration is allowed
it is obvious, when to reset those clocks (as often as possible for upper bounds; only
when we have to reenter the phase for lower bounds).

We implemented a tool that converts a counterexample formula into a phase event
automaton. Due to space limitations the algorithm cannot be explained in full detail
here. One of the resulting automata was already shown in Fig. 3. The automaton for the
other formula is given in [13].

5 A Constraint-based Semantics for PEA

To give semantics for CSP-OZ-DC (and phase event automata) in a domain where
model-checking is possible, we use an “old-fashioned recipe for real-time” [1,16]. The
runs are described by sequences of states, where each state gives the values of all vari-
ables for a given time interval. Lamport adds one variable to denote the time since the
start of the system. As we are not interested in absolute time, we have a variable len
instead, denoting the length of the time interval. Events are represented by changes of
Boolean variables as in section 2. Since we want to verify safety properties of phase
event automata using a discrete time model checker, we translate the automata into
discrete transition systems (with constraints) in such a way that the transition system
generate as runs exactly the above sequences of interval states.
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5.1 Transition Constraint Systems

A transition constraint system (TCS) T = (Loc,Var, Init,Trans) is a 4-tuple such that

– Loc is a set (of locations),
– Var ⊆ V is a finite set of unprimed (state) variables,
– Init : Loc→ L(Var) assigns a (state) constraint to every location, and
– Trans : Loc × Loc → L(Var ∪ Var′) assigns a (transition) constraint to every pair

of locations.

We can view Init, which is a vector of state constraints, as vector of sets of initial states
of a transition system. Likewise, Trans is matrix of transition constraints, which can be
viewed as a matrix of relations between pre-states (valuations of the unprimed variables)
and post-states (valuations of the primed variables) of a transition system. See [13] for
examples of transition constraint systems.

We define the parallel composition T1 ‖ T2 of two transition constraint systems T1
and T2 (where Ti = (Loci,Vari, Initi,Transi), i = 1, 2) as the TCS T = (Loc1 × Loc2,
Var1 ∪ Var2, Init,Trans) such that for all locations (`1, `2), (`′1, `

′
2) ∈ Loc1 × Loc2,

– Init((`1, `2)) = Init1(`1) ∧ Init(`2), and
– Trans((`1, `2), (`′1, `

′
2)) = Trans1(`1, `′1) ∧ Trans(`2, `′2).

Let T = (Loc,Var, Init,Trans) be a TCS. A state of T is a pair (`, α) of a location
` ∈ Loc and a Var-valuation α. Taking states as vertices, the TCS T can be viewed
as a (potentially infinite) directed graph (where two states are connected by an edge
if they satisfy the respective transition constraint). This graph gives rise to the usual
notions of run and reachable state. Formally, a run of T is an infinite sequence of states
〈(`0, α0), (`1, α1), . . .〉 such that

1. α0 |= Init(`0), and
2. for all i ≥ 0, αi ∪ α′i+1 |= Trans(`i, `i+1).

We call a state (`, α) reachable if there is a run 〈(`0, α0), (`1, α1), . . .〉 of T such that
(`, α) = (`i, αi) for some i ≥ 0. By Reach(T ), we denote the set of reachable states of
T . As is easily seen, the notion of run is compatible with parallel composition.

Lemma 3. For TCS T 1 and T 2, 〈((`10, `20), α0), ((`
1
1, `

2
1), α1), . . .〉 is a run of T 1 ‖ T 2

if and only if 〈(`10, α0|Var1), (`
1
1, α1|Var1), . . .〉 and 〈(`20, α0|Var2), (`

2
1, α1|Var2), . . .〉 are

runs of T 1 and T 2, respectively.

5.2 Translation of PEA to TCS

We now present a translation of a phase event automaton A = (P,V,A,C,E, s, I,P0)
into a transition constraint system T (A) = (Loc,Var, Init,Trans). There are two key
features of this translation. First, continuous transitions of the automaton (which are
implicit in the timed automata model) are translated into explicit discrete transitions.
Second, the distinction between state and event variables is given up in favour of state
variables; events are modelled by state change. To this end, we transform formulas
ϕ ∈ L(V) into formulas ϕ[e 6≈ e′/e]e∈Events ∈ L(V ∪ Events′) by replacing each event
variable e ∈ Events with a disequation e 6≈ e′. Furthermore, we introduce two auxiliary
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variables, disc of type Bool (indicating whether the next transition is a discrete one) and
len of type Time (recording the length of the time interval of a continuous transition).
These auxiliary variables are reserved specially for translating PEA to TCS, therefore
they may not be used by any PEA. Formally, the translation T (A) is given by:

– Loc = P.
– Var = V ∪ A ∪ C ∪ {len,disc}.
– For all p ∈ P,

Init(p) =
{
¬disc ∧

∧
c∈C c≈ 0 ∧ s(p) ∧ I(p) ∧ len > 0 if p ∈ P0,

false otherwise.

– For all p1, p2 ∈ P,

Trans(p1, p2) =


Inv(p2)

′ ∧

Cont ∨
∨

(p1,g,X,p2)∈E

Disc(g,X)

 if p1 = p2,

Inv(p2)
′ ∧

 ∨
(p1,g,X,p2)∈E

Disc(g,X)

 if p1 6= p2,

where the formulas Inv(p2), Cont and Disc(g,X) are given by:

Inv(p2) = len > 0 ∧ s(p2) ∧ I(p2)

Cont = ¬disc ∧ disc′ ∧
∧
c∈C

c′ ≈ c + len ∧
∧

x∈V∪A

x′ ≈ x

Disc(g,X) = disc ∧ ¬disc′ ∧ g[e 6≈ e′/e]e∈Events ∧
∧
c∈X

c′ ≈ 0 ∧
∧

c∈C\X

c′ ≈ c

Here, Inv(p) expresses the invariant constraints (state and clock) associated with phase
p, Cont relates pre- and post-states in a continuous transition, and Disc(g,X) relates
pre- and post-states of a discrete transition (with guard g and resetting the clocks in X).
See [13] for samples of PEA translated to TCS.

5.3 Semantical Correctness of the Translation

We show that the translation T (A) of a PEA A preserves the semantics in the
sense that there is a correspondence between the runs of A and T (A). Given a
run r = 〈(`0, α0), (`1, α1), . . .〉 of the TCS T (A), we define an infinite sequence
rA = 〈(p0, β0, γ0), t0,Y0, (p1, β1, γ1), t1,Y1, . . .〉 such that for all i ≥ 0, pi = `2i,
βi = α2i|V , γi = α2i|C, ti = α2i(len) and Yi = {e ∈ A | α2i+1(e) 6= α2i+2(e)}. As
the following theorem shows, this translation maps runs of the TCS T (A) to runs of
the PEA A. Furthermore, the translation is surjective, so for every run of A there is a
corresponding run of T (A). See [13] for a proof.

Theorem 4. Let A be a PEA and T (A) its TCS translation.

1. For all runs r of T (A), rA is a run of A.
2. For every run r of A there is a run r̂ of T (A) such that r̂A = r.
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Note that the proof of the first half of the theorem requires convexity of the clock in-
variants of the PEA. In fact, without convexity, T (A) might show runs that are artefacts
of the translation and do not correspond to runs of A.

As a corollary, we obtain a correspondence between the reachable states of A and
T (A), which justifies doing reachability analysis on the discrete system T (A) instead
of the timed automaton A. To state the correspondence formally, we translate a state
(`, α) of T (A) into a state (`, α)A = (`, α|V , α|C) of A. The corollary claims that this
translation is a surjective mapping from the reachable states of T (A) to the reachable
states of A; see [13] for a proof.

Corollary 5. Let A be a PEA and T (A) its TCS translation.

1. For all states (`, α) of T (A), if (`, α) ∈ Reach(T (A)) then (`, α)A ∈ Reach(A).
2. For all states (p, β, γ) of A, if (p, β, γ) ∈ Reach(A) then there is state (`, α) ∈

Reach(T (A)) such that (`, α)A = (p, β, γ).

Note that the translation of the reachable states of the TCS T (A) ignores variables
that are not state variables of the PEA A, i. e., the event variables in A and the auxiliary
variables disc and len. However, the reachable states of T (A) are not more informative
than the reachable states of A, because the values of the event variables are irrelevant
for reachability in T (A).

6 Model Checking TCS

We verify temporal properties of CSP-OZ-DC specifications by translating them to
transition constraint systems, which we can model check. In this paper, we confine
ourselves to the verification of state invariants, i. e., to checking whether a set of unsafe
states (violating the invariant) is reachable from the initial states. It is well known that
this implies the ability to verify arbitrary safety properties by augmenting the system
with suitable monitors or test-automata [7].

For verification, we decided to use the constraint-based model checker ARMC [19],
because its constraint solver can handle linear arithmetic over the reals, which is crucial
for our approach to real-time. The model checker takes as input a transition constraint
system and a set of unsafe states (given as a vector of constraints, like the initial states).
Going backwards from the unsafe states, it tries to determine whether the initial states
are reachable by alternating the following two steps.

1. Over-approximating the reachable states using predicate abstraction (w. r. t. a cur-
rent set of abstraction predicates) in order to disprove reachability, i. e., to prove the
invariant.

2. Under-approximating the reachable states using a bounded (yet precise) symbolic
backwards reachability analysis in order to prove reachability, i. e., to detect real
counterexamples (and to refine the set of abstraction predicates to exclude spurious
counterexamples).

In general, this abstraction-refinement loop may not terminate. However, in practice it
does terminate on numerous examples after a small number of iterations.
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We would like to stress that the effectiveness and the performance of the model
checker crucially depend on the constraints in the input. Both steps in the abstraction-
refinement loop, computing a predicate abstraction and doing a symbolic reachability
analysis, require to decide satisfiability of formulae in L. Therefore, L should be a
decidable class of constraints, e. g., linear arithmetic over the integers and reals as in
our case study. Moreover, the solver for L should be performant in practice, since one
run of the model checker may trigger thousands of calls to the solver.

6.1 Verification of the Case Study

To demonstrate our approach, we verified that our parameterised elevator never drives
below the lowest or above the highest floor, i. e., we verified the invariant

Min ≤ current ≤ Max . (1)

In order to model check, we translated the CSP-OZ-DC specification according to sec-
tion 4 into a parallel product of four PEA, one for the CSP part, one for the OZ part
and one for each DC formula. As described in section 5, each PEA was translated to
a TCS; see [13] for the details. The parallel composition of these TCS together with
the negation of the invariant were fed into the model checker ARMC, which proved
the invariant in about 2 minutes6 with two iterations of the abstraction-refinement loop.
Recall that the CSP-OZ-DC specification as well as the invariant were parameterised
by the symbolic constants Min and Max. Thus, we have verified the invariant for all
elevators that are instances of the specification, independent of the actual size the state
space of those instances.

Note that even the simple invariant (1) is a real-time property, despite it does not
contain timing constraints. However, the invariant does depend on the timing constraints
enforced by the DC formulas; in fact, erasing any of the two DC formulas from the
CSP-OZ-DC specification causes (1) to be violated, which ARMC can demonstrate
with counterexample traces in less than 20 seconds.

7 Conclusion

We presented a technique to model-check a combined specification written in CSP-OZ-
DC by translating it into phase event automata. The semantics of CSP-OZ-DC used
here is equivalent to the original one given in [14], however, it is defined in a different
way. The three parts of the specification are separately translated into phase event au-
tomata, which are then joined by parallel composition. These automata have the notion
of events, data variables and clocks, which allows to represent these concepts without
encoding. Their special parallel composition is equivalent to CSP synchronised par-
allel composition and logical conjunction in Object-Z and Duration Calculus. These
automata are further translated into transition constraint systems that are then checked
by a constraint-based model-checker using the abstraction-refinement paradigm. The
model-checker can work with symbolic values, thus admits checking parameterised
specifications.

6 Measured on a standard Linux PC (2.6 GHz Pentium 4, 512 MB RAM).
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7.1 Related Work

In [14] we already presented a model-checking algorithm using the model-checker Up-
paal for timed automata. However, it could only handle a very restricted set of Duration
Calculus that could not refer to state variables. Also it could only handle finite system.

In [8] a translation from TCOZ, a combination of Timed-CSP and Object-Z, to
Timed Automata is presented. In TCOZ timing behaviour is not separated but mixed
with the CSP part and the translation closely follows the structure of the Timed-CSP
part. This approach lacks support for infinite data.

A bounded model-checking (BMC) approach for checking validity of dense-time
Duration Calculus was first presented in [9] and is the basis for the tool IDLVALID [20].
However, BMC can only find counter-examples upto a given length and also does not
support infinite data.

Closest to our model of phase event automata are the timed automata of Kronos [25],
which use the same model of clocks and the same synchronisation on events but lack
the data part, and phase automata [24], where the idea of synchronisation over states
is taken from. In many other automata models, e.g., state charts, there is a shared data
space in the form of global variables, that can be read from and written to by any
component. This leads to unexpected side-effects though, for example, if a component
that writes to the variable is added later.

HyTech [2] can also check parameterised systems. However the approach used there
is complementary: HyTech finds the parameter values for which the system is safe,
while in our approach safety is checked for all possible parameters values. Also HyTech
can only have parameters in timing constraints.

There exist a number of other abstraction-refinement model checkers, for example
BLAST [11], MAGIC [5] and SLAM [3]. These model checkers are tailored to check
properties of sequential or multi-threaded imperative programs, often operating systems
code, and they generally deal well with arrays and linear arithmetic over the integers.
However, to our knowledge, none of the above model checkers supports reals, which
are essential for model checking real-time systems.

7.2 Future Work

Currently the model-checker can only check for reachability. We would like to use the
technique of test-automata [7] to reduce model-checking of DC-formulae to reacha-
bility. In this approach a parallel automaton checks the formula and reaches a certain
state if the formula is violated. We are currently researching the class of Duration Cal-
culus formulae that can be checked by this approach. It is even larger than the set of
counterexample formulae.

The above approach only allows safety properties. However, there exists an ex-
tension of ARMC, the model-checker used here, that allows to check liveness prop-
erties [17]. It can only check for fair termination, but with the idea of test automata
it is possible to check for liveness properties given in Duration Calculus extended by
liveness [21].
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A Proofs from Section 5

A.1 Proof of Theorem 4

Theorem 4 claims a back and forth correspondence between the runs of a PEA A =
(P,V,A,C,E, s, I,P0) and its TCS translation T (A) = (Loc,Var, Init,Trans). In order
to prove this correspondence, we need a number of lemmas.

The first lemma relates satisfying valuations of a formula ϕ containing event vari-
ables to satisfying valuations of the formula ϕ[e 6≈ e′/e]e∈Events, which models events
as state change on event variables.

Lemma 6. Let V ⊆ V be a set of variables. For all formulas ϕ ∈ L(V), for all V-
valuations β and all (V ∪ (V ′ ∩ Events′))-valuations α such that for all e ∈ Events,
β |= e iff α |= e 6≈ e′, we have β |= ϕ if and only if α |= ϕ[e 6≈ e′/e]e∈Events.

Proof. Note that ϕ[e 6≈ e′/e]e∈Events is defined by structural recursion over the formula
ϕ, where the interesting cases are ϕ being atomic and ϕ starting with a quantifier:

ϕ[e 6≈ e′/e]e∈Events =

{
e 6≈ e′ if ϕ = e ∈ Events
ϕ if ϕ is another atomic formula

Qxψ[e 6≈ e′/e]e∈Events =

{
Qe, e′ψ[e 6≈ e′/e]e∈Events if x = e ∈ Events
Qxψ[e 6≈ e′/e]e∈Events otherwise

The claim of the lemma follows by a straightforward inductive argument. 2

The following lemma reveals details about how the runs of T (A) look like. In par-
ticular, the lemma states that the auxiliary variable disc strictly alternates its value, and
that the odd states on the run are (almost) completely determined by their immediate
predecessors.

Lemma 7. Let 〈(`0, α0), (`1, α1), . . .〉 be a run of T (A).

1. For all i ≥ 0, αi(len) > 0.
2. For all i ≥ 0, α2i(disc) = false and α2i+1(disc) = true.
3. For all i ≥ 0, `2i+1 = `2i and α2i+1|V∪A = α2i|V∪A and α2i+1|C = α2i|C +

α2i(len).

Proof. We prove each of the claims independently of the others.

1. By induction on i.
– i = 0: α0 |= Init(`0) and |= Init(`0)→ len > 0.
– i ≥ 1: As αi−1 ∪ αi |= Trans(`i−1, `i) and |= Trans(`i−1, `i)→ len′ > 0, we

have αi |= len > 0.
2. By induction on i.

– i = 0: Sinceα0 |= Init(`0) and |= Init(`0)→¬disc, we haveα0(disc) = false.
As α0 ∪ α′1 |= Trans(`0, `1) and |= Trans(`0, `1)→ disc 6≈ disc′, we have
α0(disc) 6= α1(disc). Hence α1(disc) = true.
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– i ≥ 1: Due to the fact that α2i−2 ∪ α′2i−1 |= Trans(`2i−2, `2i−1) and |=
Trans(`2i−2, `2i−1)→disc 6≈disc′, we have α2i−2(disc) 6= α2i−1(disc). Simi-
larly, as α2i−1∪α′2i |= Trans(`2i−1, `2i) and |= Trans(`2i−1, `2i)→disc 6≈disc′,
we have α2i−1(disc) 6= α2i(disc). Hence α2i(disc) = α2i−2(disc) and claim
follows by induction hypothesis.

3. Let i ≥ 0. We know that α2i∪α′2i+1 |= ¬disc ∧ disc′. Together with α2i∪α′2i+1 |=
Trans(`2i, `2i+1), this implies `2i = `2i+1 and α2i ∪ α′2i+1 |=

∧
c∈C c′ ≈ c + len ∧∧

x∈V∪A x′≈x by construction of Trans(`2i, `2i+1). Hence for all c ∈ C, α2i+1(c) =
α2i(c) + α2i(len), and for all x ∈ V ∪ A, α2i+1(x) = α2i(x). 2

Lemma 8 states the first half of Theorem 4, namely that the translation of a run of
the transition constraint system T (A) actually is a run of the phase event automatonA.

Lemma 8. For all runs r of T (A), rA is a run of A.

Proof. Let r = 〈(`0, α0), (`1, α1), . . .〉. We have to show that rA satisfies the conditions
for runs of a PEA.

1. Since α0 |= Init(`0), we know that Init(`0) 6= false, so p0 = `0 ∈ P0.
2. Let c ∈ C. Since α0 |= Init(`0) and |= Init(`0)→ c≈ 0, we know that α0 |= c≈ 0,

so γ0(c) = α0|C(c) = α0(c) = 0.
3. Let i ≥ 0. Case distinction.

– i = 0. Since α0 |= Init(`0) and |= Init(`0)→ s(`0) and p0 = `0, we know that
α0 |= s(p0). Hence β0 = α0|V |= s(p0).

– i ≥ 1. Since α2i−1∪α′2i |= Trans(`2i−1, `2i) and |= Trans(`2i−1, `2i)→ s(`2i)
′

and pi = `2i, we know that α2i−1 ∪ α′2i |= s(pi)
′. Thus α′2i |= s(pi)

′, so
α2i |= s(pi), hence βi = α2i|V |= s(pi).

4. Let i ≥ 0 and let 0 ≤ δ ≤ ti = α2i(len). We have to show that γi+δ |= I(pi), where
pi = `2i and γi = α2i|C. By convexity of I(pi), it suffices to show that γi |= I(pi)
and γi + ti |= I(pi).

– For showing that γi |= I(pi), we distinguish two cases.
• i = 0. Since α0 |= Init(`0) and |= Init(`0)→ I(`0) and p0 = `0, we know

that α0 |= I(p0). Hence γ0 = α0|C |= I(p0).
• i ≥ 1. Due to the facts that α2i−1 ∪ α′2i |= Trans(`2i−1, `2i) and |=

Trans(`2i−1, `2i)→I(`2i)
′ and pi = `2i, we know that α2i−1∪α′2i |= I(pi)

′.
Thus α′2i |= I(pi)

′, so α2i |= I(pi), hence γi = α2i|C |= I(pi).
– For showing that γi + ti |= I(pi), we use the facts that α2i+1|C = α2i|C +
α2i(len) = γi + ti and `2i+1 = `2i by Lemma 7. Since α2i ∪ α′2i+1 |=
Trans(`2i, `2i+1) and |= Trans(`2i, `2i+1)→ I(`2i+1)

′ and pi = `2i = `2i+1,
we know that α2i ∪ α′2i+1 |= I(pi)

′. Thus α′2i+1 |= I(pi)
′, so α2i+1 |= I(pi),

hence γi + ti = α2i+1|C |= I(pi).
5. Let i ≥ 0. We know that α2i+1 ∪ α′2i+2 |= Trans(`2i+1, `2i+2). By Lemma 7, we

know furthermore that α2i+1 ∪ α′2i+2 |= disc ∧ ¬disc′. Thus, there exists an edge
(`2i+1, g,X, `2i+2) ∈ E such that α2i+1 ∪ α′2i+2 |= Disc(g,X).
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(a) Since |= Disc(g,X) → g[e 6≈ e′/e]e∈Events, we have that α2i+1 ∪ α′2i+2 |=
g[e 6≈ e′/e]e∈Events. And since free(g[e 6≈ e′/e]e∈Events) ⊆ V ∪ V ′ ∪ A ∪ A′ ∪
C, we know that α2i+1|V ∪ α′2i+2|V′ ∪ α2i+1|C ∪ (α2i+1 ∪ α′2i+2)|A∪A′ |=
g[e 6≈ e′/e]e∈Events. By Lemma 7, α2i+1|V = α2i|V and α2i+1|C = α2i|C +
α2i(len), so we have βi∪β′i+1∪γi+ti∪(α2i+1∪α′2i+2)|A∪A′ |= g[e 6≈ e′/e]e∈Events.
By Lemma 6, this is equivalent to βi ∪ β′i+1 ∪ γi + ti ∪ χYi |A |= g because
for all e ∈ A, α2i+1 ∪ α′2i+2 |= e 6≈ e′ iff e ∈ Yi iff χYi |= e. Finally,
βi ∪ β′i+1 ∪ γi + ti ∪ χYi |A |= g is equivalent to βi ∪ β′i+1 ∪ γi + ti ∪ χYi |= g
because free(g) ∩ Events ⊆ A.

(b) Since |= Disc(g,X)→
∧

c∈X c′ ≈ 0 ∧
∧

c∈C\X c′ ≈ c, we have that α2i+1 ∪
α′2i+2 |=

∧
c∈X c′≈ 0 ∧

∧
c∈C\X c′≈ c, hence α2i+1|C ∪α′2i+2|C′ |=

∧
c∈X c′≈

0 ∧
∧

c∈C\X c′ ≈ c. By Lemma 7, α2i+1|C = α2i|C + α2i(len), so we have
γi + ti ∪ γ′i+1 |=

∧
c∈X c′ ≈ 0 ∧

∧
c∈C\X c′ ≈ c, which is equivalent to γi+1 =

(γi + ti)[X := 0]. 2

To prove the second part of Theorem 4, we provide an explicit translation of a run
r = 〈(p0, β0, γ0), t0,Y0, (p1, β1, γ1), t1,Y1, . . .〉 of the PEA A to an infinite sequence
rT (A) = 〈(`0, α0), (`1, α1), . . .〉, which is defined inductively by the following equa-
tions:

`0 = p0

α0 = β0 ∪ γ0 ∪ {len 7→ t0} ∪ {e 7→ false | e ∈ A} ∪ {disc 7→ false}
`2i+1 = pi

α2i+1 = βi ∪ γi + ti ∪ {len 7→ ti} ∪ α2i|A ∪ {disc 7→ true}
`2i+2 = pi+1

α2i+2 = βi+1 ∪ γi+1 ∪ {len 7→ ti+1} ∪
{e 7→ ¬α2i(e) | e ∈ Yi} ∪ {e 7→ α2i(e) | e ∈ A \ Yi} ∪ {disc 7→ false}

The following lemma asserts that the sequence rT (A), the translation of the PEA
run r, actually is a run of the TCS T (A).

Lemma 9. For all runs r of A, rT (A) is a run of T (A).

Proof. Let r = 〈(p0, β0, γ0), t0,Y0, (p1, β1, γ1), t1,Y1, . . .〉. We have to show that rT (A) =
〈(`0, α0), (`1, α1), . . .〉 satisfies the conditions for runs of the TCS T (A).

1. Since `0 = p0 ∈ P0, Init(`0) 6= false. To see that α0 |= Init(`0), note that
– α0 |=

∧
c∈C c≈ 0 because α0|C = γ0 and γ0(c) = 0 for all c ∈ C,

– α0 |= I(`0) because α0|C = γ0 |= I(p0),
– α0 |= s(`0) because α0|V = β0 |= s(p0),
– α0 |= len > 0 because α0(len) = t0 > 0, and
– α0 |= ¬disc because α0(disc) = false.

2. Let i ≥ 0. For showing that αi ∪ α′i+1 |= Trans(`i, `i+1), we distinguish two cases.
– i = 2j. We have `2j = `2j+1 = pj, so it suffices to show that α2j ∪ α′2j+1 |=

Inv(pj)
′ ∧ Cont. To show that α2j ∪ α′2j+1 |= Inv(pj)

′, it suffices to prove that
α2j+1 |= Inv(pj), which holds because of the following facts:
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• α2j+1 |= I(pj) because α2j+1|C = γj + tj |= I(pj),
• α2j+1 |= s(pj) because α2j+1|V = βj |= s(pj), and
• α2j+1 |= len > 0 because α2j+1(len) = tj > 0.

To see that α2j ∪ α′2j+1 |= Cont, note that
• α2j ∪ α′2j+1 |= ¬disc ∧ disc′,
• α2j∪α′2j+1 |=

∧
c∈C c′≈c+ len because α2j+1(c) = γi(c)+ ti = α2j(c)+

α2j(len) for all c ∈ C, and
• α2j ∪ α′2j+1 |=

∧
x∈V∪A x′ ≈ x because α2j+1|V∪A = βj ∪ α2j|A = α2j|V ∪

α2j|A = α2j|V∪A.
– i = 2j + 1. We have `2j+1 = pj and `2j+2 = pj+1. As r is a run of the PEA A,

there is an edge (pj, g,X, pj+1) ∈ E such that
(a) βj ∪ β′j+1 ∪ (γj + tj) ∪ χYj |= g and
(b) γj+1 = (γj + tj)[X := 0].
We will show that α2j+1 ∪ α′2j+2 |= Inv(pj+1)

′ ∧ Disc(g,X). To show that
α2j+1 ∪α′2j+2 |= Inv(pj+1)

′, it suffices to prove that α2j+2 |= Inv(pj+1), which
holds because of the following facts:
• α2j+2 |= I(pj+1) because α2j+2|C = γj+1 |= I(pj+1),
• α2j+2 |= s(pj+1) because α2j+2|V = βj+1 |= s(pj+1), and
• α2j+2 |= len > 0 because α2j+2(len) = tj+1 > 0.

To see that α2j+1 ∪ α′2j+2 |= Disc(g,X), note that
• α2j+1 ∪ α′2j+2 |= disc ∧ ¬disc′,
• α2j+1 ∪ α′2j+2 |=

∧
c∈X c′ ≈ 0 ∧

∧
c∈C\X c′ ≈ c because α2j+2|C = γj+1 =

(γj + tj)[X := 0] = (α2j+1|C)[X := 0], and
• α2j+1 ∪ α′2j+2 |= g[e 6≈ e′/e]e∈Events because, well that’s a bit more com-

plicated: For all e ∈ A, χYj |= e iff e ∈ Yj iff α2j+1 ∪ α′2j+2 |= e 6≈
e′ iff α2j+1|A ∪ α′2j+2|A′ |= e 6≈ e′. Since we know that α2j+1|V∪C ∪
α′2j+2|V′ ∪ χYj = βj ∪ (γj + tj) ∪ β′j+1 ∪ χYj |= g, Lemma 6 implies that
α2j+1|V∪C ∪ α′2j+2|V′ ∪ α2j+1|A ∪ α′2j+2|A′ |= g[e 6≈ e′/e]e∈Events. Hence
α2j+1 ∪ α′2j+2 |= g[e 6≈ e′/e]e∈Events. 2

As expected (and proven by the following lemma), translating a run r of the PEA
A to a run of the TCS T (A) and then translating that run back to a run of A yields the
same run r.

Lemma 10. For all runs r of A, (rT (A))A = r.

Proof. Let r = 〈(p0, β0, γ0), t0,Y0, (p1, β1, γ1), t1,Y1, . . .〉 be a run ofA, and let rT (A) =
〈(`0, α0), (`1, α1), . . .〉. To show that (rT (A))A = r, let i ≥ 0. By case distinction on
i = 0 and i ≥ 1, it is easy to see that

– pi = `2i,
– βi = α2i|V ,
– γi = α2i|C, and
– ti = α2i(len).

Also for all e ∈ A, α2i+1(e) = α2i(e) 6= α2i+2(e) iff e ∈ Yi, hence Yi = {e ∈ A |
α2i+1(e) 6= α2i+2(e)}. 2

Now, Theorem 4 follows immediately from the lemmas 8, 9 and 10.
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Theorem 4. Let A be a PEA and T (A) its TCS translation.

1. For all runs r of T (A), rA is a run of A.
2. For every run r of A there is a run r̂ of T (A) such that r̂A = r.

A.2 Proof of Corollary 5

Corollary 5 establishes a back and forth correspondence between the reachable states of
a PEAA = (P,V,A,C,E, s, I,P0) and its TCS translation T (A) = (Loc,Var, Init,Trans).
We will prove the two directions of the theorem as two separate lemmas.

Lemma 11. For all states (`, α) of T (A), if (`, α) ∈ Reach(T (A)) then (`, α)A ∈
Reach(A).

Proof. If (`, α) ∈ Reach(T (A)) then there is a run r = 〈(`0, α0), (`1, α1), . . .〉 of
T (A) and an i ≥ 0 such that (`, α) = (`i, αi). Case distinction.

– i = 2j. Then (`i, αi|V , αi|C) is the j-th state on the run rA of A, so (`i, αi|V , αi|C)
is reachable in A.

– i = 2j + 1. By Lemma 7, `i = `i−1 and αi|V = αi−1|V and αi|C = αi−1|C +
αi−1(len). The triple (`i−1, αi−1|V , αi−1|C) is the j-th state of the run rA, so it is
reachable in A. Moreover, the duration of that j-th state is αi−1(len), and therefore
(`i, αi|V , αi|C) = (`i−1, αi−1|V , αi−1|C + αi−1(len)) is reachable in A. 2

Lemma 12. For all states (p, β, γ) of A, if (p, β, γ) ∈ Reach(A) then there is a state
(`, α) ∈ Reach(T (A)) such that (`, α)A = (p, β, γ).

Proof. Assume that (p, β, γ) ∈ Reach(A). By the definition of reachability, there are
a run r = 〈(p0, β0, γ0), t0,Y0, (p1, β1, γ1), t1,Y1, . . .〉 of A, a position i ≥ 0 and a
0 ≤ δ ≤ ti such that (p, β, γ) = (pi, βi, γi + δ). Case distinction.

– δ = 0. For the (2i)-th state (`2i, α2i) of rT (A)), we have (`2i, α2i) ∈ Reach(T (A))
and (`2i, α2i)A = (`2i, α2i|V , α2i|C) = (pi, βi, γi) = (pi, βi, γi + δ) = (p, β, γ).

– δ = ti. For the (2i + 1)-th state (`2i+1, α2i+1) of rT (A)), we have (`2i+1, α2i+1) ∈
Reach(T (A)) and

(`2i+1, α2i+1)A = (`2i+1, α2i+1|V , α2i+1|C) = (`2i, α2i|V , α2i|C + α2i(len))
= (pi, βi, γi + ti) = (pi, βi, γi + δ) = (p, β, γ).

– 0 < δ < ti. By Lemma 1, we can stutter the i-th state (pi, βi, γi) of r with δ and
obtain another run r̂ ofA. So in r̂, the i-th state (pi, βi, γi) lasts for δ time units, and
the new (i+1)-th state (pi, βi, γi + δ) lasts for ti−δ time units. Thus, for the (2i+2)-
th state (`2i+2, α2i+2) of r̂T (A)), we know that (`2i+2, α2i+2) ∈ Reach(T (A)) and
that (`2i+2, α2i+2)A = (`2i+2, α2i+2|V , α2i+2|C) = (pi, βi, γi + δ) = (p, β, γ). 2

Obviously, Corollary 5 follows immediately from the lemmas 11 and 12.

Corollary 5. Let A be a PEA and T (A) its TCS translation.

1. For all states (`, α) of T (A), if (`, α) ∈ Reach(T (A)) then (`, α)A ∈ Reach(A).
2. For all states (p, β, γ) of A, if (p, β, γ) ∈ Reach(A) then there is state (`, α) ∈

Reach(T (A)) such that (`, α)A = (p, β, γ).
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B Translating the Elevator Specification to a TCS

In this appendix, we present the transition constraint systems obtained from translating
the CSP-OZ-DC specification in figure 2. We assume that the specification has already
be translated into a phase event automation A(Elevator), given as a parallel product

A(CSPElevator) ‖ A(OZElevator) ‖ A(DC1Elevator) ‖ A(DC2Elevator),

whereA(CSPElevator) — see figure 4 — is the translation of the CSP part,A(OZElevator)
is the translation of the OZ part, andA(DC1Elevator) — see figure ?? — andA(DC2Elevator)
— see figure 3 — are translations of the first and second DC formulae, respectively. In-
stead of translating the parallel productA(Elevator) directly to a TCS T (A(Elevator)),
we translate each of the four parallel components individually. For reasons of presenta-
tion, we factor out the constraints determining the behaviour of the auxiliary variables
disc and len into an auxiliary TCS Taux. That TCS also specifies the behaviour of the
“parameter” variables Min and Max, i. e., Taux does not constrain the initial values of
Min and Max (except that Min must be less than Max) but ensures that they keep their
initial values, so the parameters logically behave like symbolic constants. All in all, we
obtain the transition constraint system TElevator as a fivefold parallel composition

T (A(CSPElevator)) ‖ T (A(OZElevator)) ‖ T (A(DC1Elevator)) ‖ T (A(DC2Elevator)) ‖ Taux,

the components of which are shown in the figures 5 to 9 below.

Loc = {p0, p1, p2}
Var = {disc, start, stop, passed, newgoal}

Init(p) =


true if p = p0

false if p = p1

false if p = p2

(Trans(pi, pj)) =

p0 p1 p2

p0

start ≈ start′

∧ stop ≈ stop′

∧ passed ≈ passed′

∧ newgoal ≈ newgoal′

disc
∧ start ≈ start′

∧ stop ≈ stop′

∧ passed ≈ passed′

∧ newgoal 6≈ newgoal′

false

p1 false
start ≈ start′

∧ stop ≈ stop′

∧ passed ≈ passed′

∧ newgoal ≈ newgoal′

disc
∧ start 6≈ start′

∧ stop ≈ stop′

∧ passed ≈ passed′

∧ newgoal ≈ newgoal′

p2

disc
∧ start ≈ start′

∧ stop 6≈ stop′

∧ passed ≈ passed′

∧ newgoal ≈ newgoal′

false

start ≈ start′

∧ stop ≈ stop′

∧ passed ≈ passed′

∧ newgoal ≈ newgoal′
∨

disc
∧ start ≈ start′

∧ stop ≈ stop′

∧ passed 6≈ passed′

∧ newgoal ≈ newgoal′

Fig. 5. TCS T (A(CSPElevator)) = (Loc,Var, Init, Trans), see figure 4; the rows in the matrix
(Trans(pi, pj)) are indexed by the pre-locations pi, the columns by the post-locations pj.
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Loc = {p0}
Var = {disc, current, goal, dir, start, stop, passed, newgoal,Min,Max}

Init(p0) = goal≈ current≈Min ∧ dir≈ 0

(Trans(pi, pj)) =

p0

p0

start ≈ start′

∧ stop ≈ stop′

∧ passed ≈ passed′

∧ newgoal ≈ newgoal′

∧ current′ ≈ current
∧ goal′ ≈ goal
∧ dir′ ≈ dir

∨
disc

∧ start 6≈ start′

∧ (goal > current→ dir′ ≈ 1)

∧ (goal < current→ dir′ ≈ −1)

∧ current′ ≈ current
∧ goal′ ≈ goal

∨
disc

∧ stop 6≈ stop′ ∧ current ≈ goal
∧ current′ ≈ current
∧ goal′ ≈ goal
∧ dir′ ≈ dir

∨
disc

∧ passed 6≈ passed′

∧ current′ ≈ current + dir
∧ goal′ ≈ goal
∧ dir′ ≈ dir

∨
disc

∧ newgoal 6≈ newgoal′

∧ Min ≤ goal′ ≤ Max ∧ goal′ 6≈ current
∧ current′ ≈ current
∧ dir′ ≈ dir

Fig. 6. TCS T (A(OZElevator)), optimised by merging the two phases into one location.

Loc = {p0, p1}
Var = {disc, len, c2, passed}

Init(p) =
{

c2 ≈ 0 if p = p0

false if p = p1

(Trans(pi, pj)) =

p0 p1

p0

¬disc
∧ passed ≈ passed′

∧ c′2 ≈ c2 + len
∨

disc
∧ passed ≈ passed′

∧ c′2 ≈ c2

disc
∧ passed 6≈ passed′

∧ c′2 ≈ 0

p1

disc
∧ passed ≈ passed′ ∧ c2 ≈ 3

∧ c′2 ≈ c2

¬disc
∧ passed ≈ passed′

∧ c′2 ≈ c2 + len ∧ c′2 ≤ 3

∨
disc

∧ passed ≈ passed′

∧ c′2 ≈ c2 ∧ c′2 ≤ 3

Fig. 7. TCS T (A(DC1Elevator)), see PEA figure ??.
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Loc = {p0, p1, p2}
Var = {disc, len, c1, current, goal, stop}

Init(p) =


c1 ≈ 0 ∧ current 6≈ goal if p = p0

c1 ≈ 0 ∧ current≈ goal if p = p1

false if p = p2

(Trans(pi, pj)) =

p0 p1 p2

p0

¬disc
∧ stop ≈ stop′

∧ c′1 ≈ c1 + len
∧ current′ 6≈ goal′

∨
disc

∧ c′1 ≈ c1
∧ current′ 6≈ goal′

false
disc

∧ c′1 ≈ 0

∧ current′ ≈ goal′

p1

disc
∧ c′1 ≈ c1
∧ current′ 6≈ goal′

¬disc
∧ stop ≈ stop′

∧ c′1 ≈ c1 + len
∧ current′ ≈ goal′

∨
disc

∧ c′1 ≈ c1
∧ current′ ≈ goal′

false

p2

disc
∧ c′1 ≈ c1
∧ current′ 6≈ goal′

disc
∧ stop 6≈ stop′

∧ c′1 ≈ c1
∧ current′ ≈ goal′

¬disc
∧ stop ≈ stop′

∧ c′1 ≈ c1 + len ∧ c′1 < 2

∧ current′ ≈ goal′
∨

disc
∧ stop ≈ stop′

∧ c′1 ≈ c1 ∧ c′1 < 2

∧ current′ ≈ goal′

Fig. 8. TCS T (A(DC2Elevator)), see PEA figure 3.

Being a prototype, the model checker ARMC currently cannot handle integers. Con-
sequently in our case study, we had to approximate the integers by reals, i. e., we relaxed
the integer variables to real variables. However, with this relaxation the invariant does
not hold any more. The reason is that when the goal floor is chosen (upon receiving a
newgoal event) it need not be integral, it might be 1.5 for instance. This might prevent
that the stop event is ever generated, so the elevator might drive too far. To prove the
invariant, we modified the system slightly. We replaced the non-deterministic choice of
goal by a loop that non-deterministically counts goal up or down in increments of 1;
the same abstraction of non-deterministic choice was used in [4]. Because this modifi-
cation neither is possible in the CSP automatonA(CSPElevator) nor in the OZ automaton
A(OZElevator) alone, we modify their product A(CSPElevator) ‖ A(OZElevator) by adding
the non-deterministic counting loop, yielding a new automaton A(CSP-OZmod Elevator).
Figure 10 shows the transition constraint system for this modified automaton.
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Loc = {p0}
Var = {disc, len,Min,Max}

Init(p0) = ¬disc ∧ len > 0 ∧ Min < Max

(Trans(pi, pj)) =

p0

p0

(¬disc ∧ disc′ ∨ disc ∧ ¬disc′)
∧ len′ > 0

∧ Min′ ≈ Min
∧ Max′ ≈ Max

Fig. 9. TCS Taux determining the behaviour of the auxiliary variables disc, len and of the param-
eters Min, Max.
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Loc = {p0, p1, p2}
Var = {disc, current, goal, dir, start, stop, passed, newgoal,Min,Max}

Init(p) =


goal≈Min ∧ current≈Min ∧ dir≈ 0 if p = p0

false if p = p1

false if p = p2

(Trans(pi, pj)) =

p0 p1 p2

p0

start ≈ start′

∧ stop ≈ stop′

∧ passed ≈ passed′

∧ newgoal ≈ newgoal′

∧ current′ ≈ current
∧ goal′ ≈ goal
∧ dir′ ≈ dir

∨
disc

∧ start ≈ start′

∧ stop ≈ stop′

∧ passed ≈ passed′

∧ newgoal ≈ newgoal′
∧ goal > Min
∧ current′ ≈ current
∧ goal′ ≈ goal − 1

∧ dir′ ≈ dir
∨

disc
∧ start ≈ start′

∧ stop ≈ stop′

∧ passed ≈ passed′

∧ newgoal ≈ newgoal′
∧ goal < Max
∧ current′ ≈ current
∧ goal′ ≈ goal + 1

∧ dir′ ≈ dir

disc
∧ start ≈ start′

∧ stop ≈ stop′

∧ passed ≈ passed′

∧ newgoal 6≈ newgoal′

∧ goal′ 6≈ current
∧ current′ ≈ current
∧ goal′ ≈ goal
∧ dir′ ≈ dir

false

p1 false

start ≈ start′

∧ stop ≈ stop′

∧ passed ≈ passed′

∧ newgoal ≈ newgoal′

∧ current′ ≈ current
∧ goal′ ≈ goal
∧ dir′ ≈ dir

disc
∧ start 6≈ start′

∧ stop ≈ stop′

∧ passed ≈ passed′

∧ newgoal ≈ newgoal′

∧ current′ ≈ current
∧ goal′ ≈ goal
∧ (goal > current→ dir′ ≈ 1)

∧ (goal < current→ dir′ ≈ −1)

p2

disc
∧ start ≈ start′

∧ stop 6≈ stop′

∧ passed ≈ passed′

∧ newgoal ≈ newgoal′
∧ current ≈ goal
∧ current′ ≈ current
∧ goal′ ≈ goal
∧ dir′ ≈ dir

false

start ≈ start′

∧ stop ≈ stop′

∧ passed ≈ passed′

∧ newgoal ≈ newgoal′

∧ current′ ≈ current
∧ goal′ ≈ goal
∧ dir′ ≈ dir

∨
disc

∧ start ≈ start′

∧ stop ≈ stop′

∧ passed 6≈ passed′

∧ newgoal ≈ newgoal′

∧ current′ ≈ current + dir
∧ goal′ ≈ goal
∧ dir′ ≈ dir

Fig. 10. TCS T (A(CSP-OZmod Elevator)), optimized by merging phases.
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